Analysis 2, Summer 2024 List 0 "Previous topics"

Basic algebra

- 1. Find the two values of r for which $r^2 2r 15 = 0$.
- 2. Find the two (complex) values of r for which $r^2 2r + 15 = 0$.
- 3. Solve $\ln(y) = \sin(x)$ for y.
- 4. Solve $\ln(x) 3 = 7t$ for *x*.
- 5. Solve $\frac{-1}{2y^2} = C + \sqrt{x^2 + 1}$ for *y*.
- 6. Solve $e^y = 9\sin(3t) t^2 + C$ for y.
- 7. Find the value of C for which $\frac{1}{2} = \frac{-3}{1+C}$.
- 8. Find the real value of C for which $\sin(0) = 10Ce^0 \frac{2}{25C^2}$.
- 9. Find values of A and B such that

$$A \cdot (x+6) + B \cdot (x-2) = 2x - 6.$$

10. Find values of C_1 and C_2 such that both of these equations are true:

$$2C_1 + 2C_2e^0 - 3\sin(0) - 0\sin(0) + 0\cos(t) = 0,$$

$$2C_2e^0 - 3\cos(0) + -0\sin(0) - \sin(0) - 0\cos(0) + \cos(0) = 1.$$

11. If $y(x) = \frac{-1}{\sqrt{C - 2\sqrt{x^2 + 1}}}$ and y(0) = -1, find the value of C. Linear algebra

12. Calculate the length (also called magnitude or norm) of the vector
$$5\hat{i} + \hat{j} + 5\hat{k}$$
.

- 13. Calculate |[2, -3]|.
- 14. Give a unit vector (that is, a vector of magnitude 1) that points in the same direction as the vector $\vec{v} = [15, 8] = \begin{bmatrix} 15\\8 \end{bmatrix} = 15\hat{\imath} + 8\hat{\jmath}.$
- 15. Give a unit vector that points in the same direction as $5\hat{i} 2\hat{j}$.
- 16. Calculate the dot product (also called scalar product) of the vectors $\vec{u} = [0, 1]$ and $\vec{v} = [-8, 5]$.
- 17. If $|\vec{v}| = 8$ and $|\vec{w}| = 7$ and the angle between \vec{v} and \vec{w} is $120^\circ = \frac{2}{3}\pi$, what is the value of $\vec{v} \cdot \vec{w}$?

- 18. If $|\vec{v}| = 3$ and $|\vec{n}| = 16$...
 - (a) ... and \vec{v} points in the same direction as \vec{n} , what is the value of $\vec{v} \cdot \vec{n}$?
 - (b) ... and \vec{v} is perpendicular to \vec{n} , what is the value of $\vec{v} \cdot \vec{n}$?
 - (c) ... and \vec{v} points in the exact opposite direction as \vec{n} (this is sometimes called "anti-parallel"), what is the value of $\vec{v} \cdot \vec{n}$?
- 19. If $|\vec{u}| = 1$ and $|\vec{v}| = 4$,
 - (a) is it possible that $\vec{u} \cdot \vec{v} = 2\sqrt{3}$?
 - (b) is it possible that $\vec{u} \cdot \vec{v} = 2$?
 - (c) is it possible that $\vec{u} \cdot \vec{v} = -2?$
 - (d) is it possible that $\vec{u} \cdot \vec{v} = 3.81$?
 - (e) is it possible that $\vec{u} \cdot \vec{v} = 4.61$?
 - (f) is it possible that $\vec{u} \cdot \vec{v} = -\sqrt{17}$?
 - (g) is it possible that $\vec{u} \cdot \vec{v} = -\sqrt{7}$?
- 20. If $|\vec{u}| = 1$ and $|\vec{w}| = 7$, describe ALL possible values that $\vec{u} \cdot \vec{w}$ could have.
- 21. If $|\vec{u}| = 1$ and $\vec{n} = \begin{bmatrix} -3\\ 4 \end{bmatrix}$,
 - (a) what is the largest possible value that $\vec{u} \cdot \vec{n}$ could have?
 - (b) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n}$ has the value from part (a).
 - (c) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n} = 0$.

22. Write $\frac{5x+6}{x^2-6x+8} = \frac{5x+6}{(x-2)(x-4)}$ as a sum of partial fractions. That is, find A and B such that

$$\frac{5x+6}{x^2-6x+8} = \frac{A}{x-2} + \frac{B}{x-4}$$

23. Write $\frac{2x-6}{(x-2)(x+6)}$ as a sum of partial fractions.

24. Write $\frac{36}{x^3 + 9x^2 + 18x}$ as a sum of partial fractions.

Analysis 1

25. Give the derivative (with respect to t) of $y = 2e^{3t} + 4\sin(5t) + 6\cos(7t) + 8t^9 + 10$.

26. If
$$y = x^9$$
, calculate $\frac{\mathrm{d}y}{\mathrm{d}x} + y'(x) + y'$.

- 27. If $y = 5 e^x \sin(\sqrt{14}x)$, simplify y'' 2y' + 15y as much as possible.
- 28. Find all critical points of $f(x) = x^4 4x^3 8x^2 + 2$ and classify each one as a local minimum, local maximum, or neither.
- 29. Find and classify the critical points of $f(x) = e^{x^2}(2x+3)$.
- 30. If f(3) = 5, f'(3) = 0, and f''(3) = 2, could x = 3 be a local minimum of f(x)? Could it be a local maximum?

31. Find the following indefinite integrals.

(a)
$$\int 11 x^4 dx$$
 (e) $\int 11 y^4 dy$ (i) $\int e^{6t} dt$
(b) $\int x^{-1/2} dx$ (f) $\int \frac{1}{y^3} dy$ (j) $\int te^t dt$
(c) $\int (\sin(2x))^2 \cos(2x) dx$ (g) $\int \frac{1}{y^2} dy$ (k) $\int e^{-x} (2x-3) dx$
(d) $\int \frac{x^4}{\sqrt{x^5+1}} dx$ (h) $\int \frac{1}{y} dy$

32. Find the definite integral $\int_0^1 (4x^3 - 9x^2) dx$. (Your answer should be a number.)

33. Give the definite integral $\int_0^1 (4x^3 - 9x^2k^2) \, dx$. (Your answer should be a formula with k.)

- 34. Calculate $\int_{a}^{b} x \, dx$. (Your answer should be a formula with a and b.)
- 35. Calculate $\int_{q^2}^{\sin q} x \, dx$. (Your answer should be a formula with q.)

36. Calculate (a)
$$\int_0^3 x e^{2x} dx$$
, (b) $\int_0^3 t e^{2t} dt$, (c) $\int_0^3 y e^{2y} dy$.