List 0

Basic algebra

1. Find the two values of r for which $r^{2}-2 r-15=0$.
2. Find the two (complex) values of r for which $r^{2}-2 r+15=0$.
3. Solve $\ln (y)=\sin (x)$ for y.
4. Solve $\ln (x)-3=7 t$ for x.
5. Solve $\frac{-1}{2 y^{2}}=C+\sqrt{x^{2}+1}$ for y.
6. Solve $e^{y}=9 \sin (3 t)-t^{2}+C$ for y.
7. Find the value of C for which $\frac{1}{2}=\frac{-3}{1+C}$.
8. Find the real value of C for which $\sin (0)=10 C e^{0}-\frac{2}{25 C^{2}}$.
9. Find values of A and B such that

$$
A \cdot(x+6)+B \cdot(x-2)=2 x-6 .
$$

10. Find values of C_{1} and C_{2} such that both of these equations are true:

$$
\begin{aligned}
2 C_{1}+2 C_{2} e^{0}-3 \sin (0)-0 \sin (0)+0 \cos (t) & =0, \\
2 C_{2} e^{0}-3 \cos (0)+-0 \sin (0)-\sin (0)-0 \cos (0)+\cos (0) & =1 .
\end{aligned}
$$

11. If $y(x)=\frac{-1}{\sqrt{C-2 \sqrt{x^{2}+1}}}$ and $y(0)=-1$, find the value of C.

Linear algebra

12. Calculate the length (also called magnitude or norm) of the vector $5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$.
13. Calculate $|[2,-3]|$.
14. Give a unit vector (that is, a vector of magnitude 1) that points in the same direction as the vector $\vec{v}=[15,8]=\left[\begin{array}{c}15 \\ 8\end{array}\right]=15 \hat{\imath}+8 \hat{\jmath}$.
15. Give a unit vector that points in the same direction as $5 \hat{\imath}-2 \hat{\jmath}$.
16. Calculate the dot product (also called scalar product) of the vectors $\vec{u}=[0,1]$ and $\vec{v}=[-8,5]$.
17. If $|\vec{v}|=8$ and $|\vec{w}|=7$ and the angle between \vec{v} and \vec{w} is $120^{\circ}=\frac{2}{3} \pi$, what is the value of $\vec{v} \cdot \vec{w}$?
18. If $|\vec{v}|=3$ and $|\vec{n}|=16 \ldots$
(a) ... and \vec{v} points in the same direction as \vec{n}, what is the value of $\vec{v} \cdot \vec{n}$?
(b) ... and \vec{v} is perpendicular to \vec{n}, what is the value of $\vec{v} \cdot \vec{n}$?
(c) ... and \vec{v} points in the exact opposite direction as \vec{n} (this is sometimes called "anti-parallel"), what is the value of $\vec{v} \cdot \vec{n}$?
19. If $|\vec{u}|=1$ and $|\vec{v}|=4$,
(a) is it possible that $\vec{u} \cdot \vec{v}=2 \sqrt{3}$?
(b) is it possible that $\vec{u} \cdot \vec{v}=2$?
(c) is it possible that $\vec{u} \cdot \vec{v}=-2$?
(d) is it possible that $\vec{u} \cdot \vec{v}=3.81$?
(e) is it possible that $\vec{u} \cdot \vec{v}=4.61$?
(f) is it possible that $\vec{u} \cdot \vec{v}=-\sqrt{17}$?
(g) is it possible that $\vec{u} \cdot \vec{v}=-\sqrt{7}$?
20. If $|\vec{u}|=1$ and $|\vec{w}|=7$, describe ALL possible values that $\vec{u} \cdot \vec{w}$ could have.
21. If $|\vec{u}|=1$ and $\vec{n}=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$,
(a) what is the largest possible value that $\vec{u} \cdot \vec{n}$ could have?
(b) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n}$ has the value from part (a).
(c) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n}=0$.
22. Write $\frac{5 x+6}{x^{2}-6 x+8}=\frac{5 x+6}{(x-2)(x-4)}$ as a sum of partial fractions.

That is, find A and B such that

$$
\frac{5 x+6}{x^{2}-6 x+8}=\frac{A}{x-2}+\frac{B}{x-4} .
$$

23. Write $\frac{2 x-6}{(x-2)(x+6)}$ as a sum of partial fractions.
24. Write $\frac{36}{x^{3}+9 x^{2}+18 x}$ as a sum of partial fractions.

Analysis 1

25. Give the derivative (with respect to t) of $y=2 e^{3 t}+4 \sin (5 t)+6 \cos (7 t)+8 t^{9}+10$.
26. If $y=x^{9}$, calculate $\frac{\mathrm{d} y}{\mathrm{~d} x}+y^{\prime}(x)+y^{\prime}$.
27. If $y=5 e^{x} \sin (\sqrt{14} x)$, simplify $y^{\prime \prime}-2 y^{\prime}+15 y$ as much as possible.
28. Find all critical points of $f(x)=x^{4}-4 x^{3}-8 x^{2}+2$ and classify each one as a local minimum, local maximum, or neither.
29. Find and classify the critical points of $f(x)=e^{x^{2}}(2 x+3)$.
30. If $f(3)=5, f^{\prime}(3)=0$, and $f^{\prime \prime}(3)=2$, could $x=3$ be a local minimum of $f(x)$? Could it be a local maximum?
31. Find the following indefinite integrals.
(a) $\int 11 x^{4} \mathrm{~d} x$
(e) $\int 11 y^{4} \mathrm{~d} y$
(i) $\int e^{6 t} \mathrm{~d} t$
(b) $\int x^{-1 / 2} \mathrm{~d} x$
(f) $\int \frac{1}{y^{3}} \mathrm{~d} y$
(j) $\int t e^{t} \mathrm{~d} t$
(c) $\int(\sin (2 x))^{2} \cos (2 x) \mathrm{d} x(\mathrm{~g}) \int \frac{1}{y^{2}} \mathrm{~d} y$
(k) $\int e^{-x}(2 x-3) \mathrm{d} x$
(d) $\int \frac{x^{4}}{\sqrt{x^{5}+1}} \mathrm{~d} x$
(h) $\int \frac{1}{y} \mathrm{~d} y$
32. Find the definite integral $\int_{0}^{1}\left(4 x^{3}-9 x^{2}\right) \mathrm{d} x$. (Your answer should be a number.)
33. Give the definite integral $\int_{0}^{1}\left(4 x^{3}-9 x^{2} k^{2}\right) \mathrm{d} x$. (Your answer should be a formula with k.)
34. Calculate $\int_{a}^{b} x \mathrm{~d} x$. (Your answer should be a formula with a and b.)
35. Calculate $\int_{q^{2}}^{\sin q} x \mathrm{~d} x$. (Your answer should be a formula with q.)
36. Calculate (a) $\int_{0}^{3} x e^{2 x} \mathrm{~d} x, \quad$ (b) $\int_{0}^{3} t e^{2 t} \mathrm{~d} t, \quad$ (c) $\int_{0}^{3} y e^{2 y} \mathrm{~d} y$.
